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Abstract 

Like most languages, sign languages evolve 
over time. It is important that sign language dic-
tionaries’ vocabularies are updated over time 
to reflect these changes, such as by adding 
new signs. However, most dictionary retrieval 
methods based upon machine learning mod-
els only work with fixed vocabularies, and it 
is unclear how they might support dictionary 
expansion without retraining. In this work, 
we explore the feasibility of dictionary expan-
sion for sign language dictionaries using a sim-
ple representation-based method. We explore 
a variety of dictionary expansion scenarios, 
e.g., varying number of signs added as well 
as amount of data for these newly added signs. 
Through our results, we show how performance 
varies significantly across different scenarios, 
many of which are reflective of real-world data 
challenges. Our findings offer implications for 
the development & maintenance of video-based 
sign language dictionaries, and highlight direc-
tions for future research on dictionary expan-
sion. 

1 Introduction 

Dictionaries are important resources for sign lan-
guages, offering a way to document the many dif-
ferent signs comprising the intricate vocabularies 
of these languages. In addition to documentation, 
dictionaries are particularly helpful to novices or 
language learners, allowing them to easily look 
up signs they are unfamiliar with. It is crucial 
that these dictionaries have mechanisms to stay 
up-to-date with changes in the language, such as 
the creation and adoption of new signs by signing 
communities. Here we consider the problem of 
dictionary expansion, where the vocabulary of an 
established sign language dictionary is updated to 
incorporate new signs. 

A key factor that makes sign language dictio-
naries (and thereby their expansion) unique is that 
sign languages are visual-manual languages. This 

means that sign language dictionaries typically use 
video entries to represent each sign in their vocabu-
lary, and need video-based approaches for users to 
look up signs and query the dictionary. In a video-
based dictionary, a user demonstrates a sign to a 
camera, and the dictionary returns a ranked list of 
entries from the dictionary that might correspond 
to that sign. Recent advancements in sign language 
datasets and modeling show exciting promise in 
making video-based dictionary retrieval a reality 
(Hassan et al., 2025). For example, many state-of-
the-art isolated sign language recognition models 
(which are trained to recognize single signs from 
vocabularies of 2k+ signs) currently achieve re-
call@10 above 90% (i.e., queried sign is in top-10 
results) – this high performance makes it possible 
to deploy these models for dictionary retrieval. 

However, a key limitation of almost all such 
modeling approaches is that it is unclear how they 
might support dictionary expansion. The technolo-
gies underlying most video-based retrieval methods 
are often machine learning classifier models trained 
on a fixed vocabulary, where each sign corresponds 
to a label in a fixed label set. Incorporating new vo-
cabulary into these models would typically require 
retraining them from scratch – however, this is 
can be computationally expensive and relies on the 
availability of a sufficient amount of high-quality 
training data, which may be difficult in practice. 
It also means that third-parties can’t adapt exist-
ing dictionaries to their needs (e.g., representing 
local dialects or specialized lexicons). An ideal ap-
proach would support vocabulary expansion with-
out retraining the existing model, but this class of 
approach remains largely unexplored. 

In this work, we investigate the feasibility of 
dictionary expansion without retraining for video-
based sign language dictionaries. To overcome 
fixed vocabulary constraints encountered with cur-
rent classification approaches, we propose a sim-
ple method that instead uses the representations 

mailto:lualex@microsoft.com
mailto:dbragg@microsoft.com
mailto:hal3@umd.edu
mailto:ladner@cs.washington.edu
mailto:dmassiceti@microsoft.com
mailto:aashakad@uw.edu


learned by deep learning models for dictionary 
retrieval, rather than just their final classification 
layer. Doing so allows us to work with unseen 
signs through nearest neighbor-type approaches. 

We explore how this type of approach performs 
across a range of circumstances, simulating dictio-
nary expansion in ideal settings as well as more 
realistic and challenging scenarios. We separately 
evaluate the performance of expanded models on 
core signs (those in the original dictionary) as well 
as newly added signs. We find that our method 
performs well when adding a small number of new 
signs (∼ 1−100), each with many examples (∼ 15 
per sign), to a dictionary with an existing large vo-
cabulary – maintaining performance compared to 
the pre-expansion for both new and old signs. How-
ever, performance degrades substantially when we 
constrain the number of examples for new signs, 
or attempt to add many new signs to the vocabu-
lary, which we argue are likely scenarios for real-
world dictionary expansion. Our work is the first 
to systematically explore computational challenges 
dictionary expansion, providing directions for fu-
ture methods development grounded in real-world 
needs of sign language dictionaries and their users. 
These opportunities for future research not only of-
fer a space for technical discovery, but also further 
the exploration of sign languages as languages (Yin 
et al., 2021; Desai et al., 2024). 

2 Background 

Sign Languages and Dictionaries. Sign lan-
guages are visual languages, with each sign com-
posed of distinct handshapes, movements, non-
manual markers, and other phonological features. 
There are over 300 sign languages in the world. Our 
work focuses on American Sign Language (ASL), 
which is the most common in North America. ASL 
is culturally significant to Deaf community in the 
continent, and is also learned by many as a second 
language (Looney and Lusin, 2019). ASL dictio-
naries are a valuable resource for this group. 

Part of what makes dictionary retrieval in sign 
language challenging is that two different signs 
might share nearly all the same phonological fea-
tures (which can cause them to look visually sim-
ilar) but have very different meanings. For exam-
ple in ASL, SORRY and PLEASE only differ in 
handshape, SUNRISE and SUNSET only differ in 
movement (examples of minimal pairs). Dictionary 
retrieval methods need to be robust to such dense 

lexical neighborhoods. 
Existing sign language dictionaries support 

querying in English, through a set of descriptive 
features, or by video demonstration. Searching 
by English word or gloss (e.g., SigningSavvy, 
LifePrint) is a valuable approach for those looking 
to learn a sign from an English word (i.e., English-
to-ASL translation). However, users cannot lever-
age these dictionaries to look up the meaning of 
an unfamiliar sign (i.e., ASL-to-English). Allow-
ing users to navigate dictionary search directly in 
sign languages is complicated as sign languages 
do not have standardized written forms. One ap-
proach is feature-based search (e.g., HandSpeak 
& (Bragg et al., 2015)) that allows users to search 
by describing features of a sign (e.g., handshapes, 
movements). Video-based search allows users to 
search by demonstrating a sign (returning all dic-
tionary entries that may match the search video). 
Video-based dictionaries also allow native signers 
to navigate dictionaries in their primary language– 
their development is an important avenue of work. 

Video-based Dictionaries and Sign Language 
Recognition. Recent advancements in datasets 
and modeling have changed the landscape of sign 
language recognition research. Consider the re-
lease of large-scale isolated sign datasets for ASL 
(e.g., ASL Citizen (Desai et al., 2023), Semlex 
(Kezar et al., 2023), PopSign (Starner et al., 2023), 
WLASL (Li et al., 2020), ASLLVD (Athitsos et al., 
2008)), each of which contains large vocabular-
ies (over 2000 signs) and multiple samples per sign 
from different contributors. It is now feasible to use 
deep learning to train models for single sign recog-
nition, and thus build video-based sign language 
dictionaries (Hassan et al., 2025). While many 
have worked to surpass dictionary retrieval perfor-
mance on these benchmark datasets (e.g., (Gueu-
wou et al., 2024; Wong et al., 2025)), most of these 
methods are limited by approaching sign language 
dictionary lookup as a classification problem – thus 
making it hard to adapt to changing vocabularies. 
In this work, we propose a basic method for lever-
aging these classifiers as dictionaries expand their 
vocabulary, and demonstrate where this method 
succeeds and where challenges still remain. 

Prior Work on Dictionary Expansion. While 
some work has explored how sign language recog-
nition models might generalize to unseen data (such 
as different datasets and different languages, e.g., 
(Wong et al., 2025)), only few have focused on the 
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task of dictionary expansion. Huamani-Malca and 
Bejarano (2023) compares different incremental 
learning approaches for Peruvian Sign Language 
dictionaries, and Gupta (2022) explores the same 
for Indian Sign Language. Both works consider 
small vocabulary contexts (under 100 signs) un-
der ideal data conditions (multiple examples of 
the new vocabulary), which might not reflect real-
world conditions with larger vocabularies, larger 
expansion demands and variable amount of ex-
amples. While some researchers have explored 
sign language recognition with data constraints 
(e.g., limited data for all signs (Bohacek and Hrúz, 
2023; Vandendriessche et al., 2025) or unequal data 
across signs (Kezar et al., 2023) or demographics 
(Atwell et al., 2024)), they again focus on fixed 
vocabulary contexts. In this work, we look at the 
combination of the two contexts i.e., expanding 
vocabularies and data-constrained recognition as 
this is the most reflective of real-world use of sign 
language recognition for dictionaries. 

3 Experimental Setup 

3.1 Task Definition 

We consider the task of video-based search in sign 
language dictionaries. For dictionary retrieval, 
we aim to map user-submitted video queries x to 
glosses1 y. We assume have access to a pre-trained 
classifier f that maps videos to a fixed number 
of glosses N : f : x → {1, . . . , N}, outputting 
probability for each gloss in the vocabulary of the 
dictionary. These probabilities can be ranked and 
used to retrieve a list of likely matching signs for 
the user (e.g. the highest probability gloss is the 
top-ranked retrieval result). 

After training this classifier, we discover that 
M new signs have become commonplace and 
we wish to add them to our classifier, to yield 
f ′ : x → {1, . . . , N + M}. We wish to expand 
the dictionary without having to retrain f , as com-
putational resources or time for retraining are lim-
ited. To facilitate the expansion of f to f ′ , we 
assume that we have access to varying number (m) 
of videos for each of the M new signs (e.g., through 
crowdsourcing contributions). 

Given this new model f ′ , we care about how well 
it does on both the original N signs (i.e., we do 
not want its performance to degrade dramatically 
on the old signs in comparison to f ), and the new 

1English translations for isolated signs 

M signs (i.e., we want it to correctly recognize the 
new signs). 

3.2 Our Dictionary Expansion Approach 

In this work, we propose a method to support 
dynamic vocabulary expansion of f to f ′ using 
learned feature representations. Deep learning 
models, particularly those trained for classifica-
tion like f , learn rich intermediate representations 
that capture semantic and visual structure in the 
data. These representations (typically extracted 
from the penultimate layer) can often generalize 
beyond the specific labels used during training. We 
adopt a similarity-based retrieval approach using 
these feature representations. Given a query video 
of a new sign, we extract its feature representation 
using f and retrieve the most similar video from 
a database using a nearest-neighbor search in the 
feature space. This database consists of feature 
representations from both the core vocabulary and 
an expansion set of new signs. 

In practice, to expand the dictionary, an admin-
istrator would simply need to process new sign 
videos through the trained (frozen) classifier to ex-
tract their feature representations and add them to 
the retrieval database. No additional training or 
fine-tuning is required. This provides a lightweight, 
scalable solution for incorporating new signs into 
a fixed-vocabulary dictionary by leveraging the 
generalization capacity of learned embeddings and 
similarity-based retrieval. Below, we discuss how 
we simulate a variety of realistic dictionary expan-
sion scenarios, carefully slicing a large ASL dictio-
nary dataset into appropriate subsets. 

3.3 Data Setup 

We use the ASL Citizen dataset (Desai et al., 2023) 
as it was collected to support research and devel-
opment of ASL dictionaries. This dataset contains 
about 84k videos of 52 d/Deaf and hard-of-hearing 
contributors fluent in ASL performing single signs. 
It also contains videos of the seed signer (a highly 
proficient ASL signer) whose videos were used to 
prompt data collection. Each video is labeled as 
1 of 2731 glosses. The dataset provides standard-
ized train, validation, and test splits by contributor, 
allowing for testing of model generalization onto 
unseen users, mimicking real-world use. 

To simulate dictionary expansion, we split 
the ASL Citizen dataset by gloss into two non-
overlapping subsets: a “core vocabulary” and an 
“unseen vocabulary”. The core vocabulary is in-



Figure 1: Schematic of Data Setup for Dictionary Expansion 

tended to simulate entries that are initially present 
in a dictionary. We assume that the dictionary ad-
ministrators have already trained a classifier, using 
the training dataset associated with the core vocab-
ulary. Held-out test recordings of the core vocabu-
lary can then be used for the purpose of simulating 
a dictionary query. 

The unseen vocabulary are glosses that we re-
serve to test dictionary expansion under various 
scenarios. The unseen vocabulary is intended to 
simulate new signs that will be added to the dictio-
nary at a future date, after machine learning mod-
els have already been trained on the core vocabu-
lary. We further split the unseen vocabulary into 
expansion and query samples. We consider the 
expansion dataset to be examples the dictionary 
administrator is in possession of, and can use to 
expand their machine learning model. The query 
dataset is then intended to simulate users querying 
the expanded model, and used to test performance 
of the expanded models. 

Mindful of how the composition of the vocabu-
lary might influence task difficulty, we randomly 
generated three different core-unseen splits for our 
dictionary expansion experiments2 . We repeat our 
experiments with each split and report average per-
formance and standard deviation across these runs. 
We note that we did not segment the core and un-
seen vocabulary by contributor, meaning that sign-
ers in the unseen vocabulary may have already been 
seen in the training dataset of the core vocabulary. 

2Splits can be found here: https://github.com/ 
aashakadesai/asl-dict-expansion-splits/ 

We consider this to still be reflective of real-world 
usage as crowdsourced dictionaries (like ASL Citi-
zen) often sustain repeat contributors. 

3.4 Dictionary Settings 

To understand how the difficulty of dictionary ex-
pansion interacts with various data acquisition chal-
lenges in the real-world, we begin by declaring a 
base setting for dictionary expansion. We then vary 
parameters of this base set-up in controlled ways 
to simulate these various data challenges. 

Base setup In this set-up, we assume we begin 
with a reasonably large core vocabulary with many 
examples per sign. We then simulate a scenario 
where only one new sign is added to the vocabu-
lary, with ample expansion samples for this sign. 
In our case, our core vocabulary consists of 1,000 
signs and total of 14,691 training videos (i.e., ∼15 
videos per sign, each performed by different con-
tributors). We then expand the vocabulary by 1 sign 
(going from 1000 to 1,001 signs) using all available 
expansion samples for that sign (i.e., ∼15 videos 
per sign, each performed by different contributors). 
We repeat this procedure over all 1,731 signs in our 
unseen vocabulary and report averaged metrics (see 
section 3.6), testing on a total of 20,902 videos. 

Adding a Sign with a Single Example Gather-
ing multiple samples for a new sign involves con-
siderable effort. For example, for dictionaries that 
rely upon crowdsourcing, newly added vocabulary 
may be recently invented signs that have not fully 
disseminated through the community yet. In these 
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cases, only a small number of contributors may 
initially provide videos of the sign. To simulate 
this scenario, our core vocabulary consists of 1,000 
signs (with ∼15 videos per sign, each performed 
by different contributors). We then expand the vo-
cabulary by 1 sign (going from 1000 to 1,001 signs) 
using only one expansion sample for that sign (in 
contrast to ∼15 samples used in the base set up). 
We consider two settings for how the single sample 
per sign is obtained: In the first setting, we assume 
that signs are organically contributed by different 
contributors. We simulate this by randomly sam-
pling a video from the unseen expansion set. In the 
second setting, we assume a long-term contributor 
(i.e., someone who has likely recorded examples 
of most of the core vocabulary) contributes a new 
sign to the dictionary. We simulate this by using a 
specific contributor’s video to represent core and 
added signs throughout the dictionary. 

Adding Multiple Signs with Multiple Examples 
In the real world, it is likely that multiple signs 
will be added to a dictionary. Dictionaries are ex-
pected to grow iteratively with contributions over 
time. This larger expansion context might have a 
more significant impact on dictionary performance 
for the core vocabulary. To simulate this scenario, 
our core vocabulary again consists of 1,000 signs 
and newly added signs have 15 expansion samples 
each. Unlike the previous two settings, instead of 
adding one sign to the dictionary, we sample a set 
of signs (n = 100, 500, 750, or 1000) to add to the 
dictionary. This allows us to test expanding the 
vocabulary by 10%, 50%, 75% and 100% respec-
tively. For each stage of expansion, we randomly 
sample three different sets of signs from the unseen 
split to be added to the dictionary, as differently 
composed sets might impact the difficulty of the 
task uniquely. We report the average performance 
across these splits as well as corresponding changes 
in performance of core vocabulary after expansion. 

Adding Multiple Signs with Few Examples 
Next, we were curious about the interaction be-
tween adding multiple signs and having limited 
expansion samples for a new sign on dictionary 
expansion – a very likely real-world scenario. To 
simulate this, we used used aspects from each of 
the above settings: Our core vocabulary consists of 
1,000 signs (with ∼15 videos per sign). We then 
test expanding the the vocabulary by 10%, 50%, 
75% and 100% (i.e., adding sets of 100, 500, 750, 
and 1000 signs respectively). But in this setting, 

newly added signs have only one expansion sam-
ple each. We again consider two settings for how 
the single sample per sign is obtained: In the first 
setting, we assume that signs are organically con-
tributed by different contributors. We simulate this 
by randomly sampling a video from the unseen 
expansion set. In the second setting, we assume a 
long-term or hired contributor adds new signs to 
a dictionary. We simulate this by using the seed 
signer’s video to represent core and added signs 
throughout the dictionary. 

Exploring Smaller Dictionaries Certain sign 
language dictionaries may be more specialized or 
in early stages of documenting a lexicon, and thus 
smaller in vocabulary. To simulate this scenario, 
we decided to create three new core-unseen splits 
(100 and 2631 signs respectively) for our experi-
ments. Each of these splits is uniquely composed 
to reflect various underlying rationales of smaller 
dictionaries. First, naively, we randomly sampled 
set of glosses. Second, reflecting a dictionary that 
might be aiming to be comprehensive but is newer, 
we sampled a set of semantically distributed glosses 
(details in Appendix E). Third, to reflect a more spe-
cialized dictionary (such as one targeted towards 
language learners), we sampled a set of glosses 
matching that use case (from HandSpeak’s list of 
first 100 signs for ASL learners). For each of these 
splits, our core vocabulary has 100 signs and total 
of ∼1490 training videos (i.e., ∼15 videos per sign, 
each performed by different contributors). We first 
test performance adding a single sign with multi-
ple examples (i.e., newly added signs have ∼15 
samples). Then we test adding multiple signs to 
the dictionary– exploring adding sets of 10, 50, 75, 
and 100 signs to the dictionary, following the same 
sampling approach as the large dictionary setting. 

3.5 Model Architecture and Training 

We use the spatiotemporal graph convolutional net-
work (ST-GCN) (Yan et al., 2018), following pre-
vious works on this dataset. We extract keypoints 
using MediaPipe Holistic, and use the same 27 
keypoints outlined in OpenHands (Selvaraj et al., 
2022). We preprocess the keypoints using the same 
procedures outlined in prior work (Selvaraj et al., 
2022; Desai et al., 2023). The model is trained on 
the core vocabulary for 100 epochs using a learn-
ing rate 1e-3, an Adam optimizer and a Cosine 
Annealing scheduler. We select the best perform-
ing checkpoint on the core validation set for our 
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expansion experiments. To extract feature embed-
dings for our experiments, we use the encoder of 
the ST-GCN model3 . We use cosine distance to 
calculate similarity between embeddings in nearest 
neighbor search for dictionary retrieval. 

3.6 Metrics 

We use metrics consistent with prior work on sign 
language dictionary retrieval to evaluate the re-
turned ranked list of glosses: Discounted Cumula-
tive Gain (DCG, which evaluates overall ranking 
of the correct sign in the list) and recall-at-k (which 
considers if the correct is in the top-k rankings). 

4 Results 

Overall, we find that the performance of our dic-
tionary expansion method varies greatly across dif-
ferent dictionary settings – Figure 2 provides a 
snapshot of our results. In the following subsec-
tions, we walk through the results in each setting 
and our corresponding analysis. The ranking of set-
tings was consistent across all metrics so we report 
DCG, but full tables reporting each metric for each 
experiment can be found in the appendix. 

4.1 Core Dictionary Performance 

We provide a baseline to contextualize dictionary 
expansion by first measuring the retrieval perfor-
mance of seen signs in the core vocabulary only, 
with no dictionary expansion performed (Table 1 
in Appendix A). The classifier trained on the core 
vocabulary achieves a DCG of 0.7787 and top-1 
accuracy of 62.21% when tested on the test split of 
the core vocabulary (1000 glosses, ∼12038 videos). 
We then validate our feature representation-based 
retrieval method: it achieves a DCG of 0.7719 and 
top-1 accuracy of 61.11% on the same test split 
of the core vocabulary. Comparing these two ap-
proaches, we see that the feature-representation 
approach performs as well as the classifier on seen 
(i.e., core) signs. We were further able to improve 
performance of the feature representation approach 
by calculating the centroid of all sample videos 
for each sign and using this instead in our retrieval 
database of feature representations. Interestingly, 
this strategy even surpasses the classifier, with a 
DCG of 0.8050 and top-1 accuracy of 66.04%. 
Thus, we retrieve the centroid representation of 
all core and expanded signs for all subsequent ex-
periments. 

3as the decoder is a single fully connected layer this corre-
sponds to the second-to-last layer of the model 

4.2 Base Setup Performance 

Having established that using extracted features 
from a classifier is an effective strategy for dictio-
nary retrieval, we next focused on testing a baseline 
dictionary expansion scenario that we consider the 
most ideal setting for dictionary expansion. In this 
set-up, we add a single sign, with expansion sam-
ples equal to the maximum number in the ASL 
Citizen training dataset for that sign (typically 15). 

When we have multiple examples for each sign, 
we find that the performance of newly added signs 
is comparable to that of the core vocabulary (Ta-
ble 2 in Appendix B). Specifically, we see a DCG 
of 0.8042 and top-1 accuracy of 65.38% on the 
new vocabulary (compared to a DCG of 0.8050 
and top-1 accuracy of 66.04% for the core vocabu-
lary). This suggests that our feature representation 
method could be effective in this dictionary expan-
sion setting. 

4.3 Adding a Sign with One Example 

When adding a new sign with just a single example, 
however, we see a significant degradation in perfor-
mance (Figure 2). When this sample is randomly 
selected, the newly added signs achieve a DCG of 
0.4492 and top-1 accuracy of 21.74% (Table 2 in 
Appendix B) – a large drop compared to a DCG of 
0.8042 and top-1 accuracy of 65.38% in the base 
setup with multiple examples per sign. 

This demonstrates that data plays a critical role, 
and we hypothesize that constraining ourselves to a 
single example video for a sign limits our method’s 
ability to provide a robust representation for re-
trieval with the new sign. The feature representa-
tion of a given video likely contains both informa-
tion about the sign along with variation specific to 
a given contributor – we hypothesized that taking 
the centroid across many samples “averages out" 
the contributor-specific variation, providing a more 
robust representation of the sign itself. 

Based upon this hypothesis, we reasoned that us-
ing a single contributor for all videos in the retrieval 
database, as opposed to different contributors, may 
reduce the impact of contributor-specific variation. 
We experimented with using a specific contribu-
tor’s videos as expansion samples for the dictio-
nary. We reasoned this would simulate a scenario 
where a long-term contributor to the dictionary has 
recorded many, if not all, signs in the vocabulary 
in addition to the added sign. A benefit of this is 
that we can then use this signer’s videos to con-



Figure 2: Performance of added vocabulary across different dictionary expansion scenarios. Bars are clustered by 
scenario and represent DCGs of added signs using centroid representations- scenarios with multiple samples (blue), 
one random contributor example (solid gold), one long-term contributor example (striped gold). 

sistently represent all signs in the dictionary, both 
core and added – and thus minimize impact of user 
variation. We tested this approach with videos of 
five different contributors from the ASL Citizen 
dataset: the seed signer (P52), P33, P11, P50, P27 
– all of whom had recorded videos for (almost all) 
glosses in the ASL Citizen dataset. We find that 
dictionary retrieval performance for added signs 
improves significantly with this single signer set up 
– in the best case (seed signer), achieving a DCG of 
0.6881 and top-1 accuracy of 49.55% after using 
only one expansion sample per added sign (Table 
2). However, we also note that performance varies 
drastically across contributors: e.g., 24.81% top-1 
accuracy using P11’s videos vs 42.15% using P27’s 
videos (results for each signer can be found table 3 
in Appendix B). 

4.4 Adding Many Signs with Many Examples 

Having explored expanding the vocabulary of a dic-
tionary by one sign (i.e., going from a vocabulary 
of 1000 to 1001), we next studied the impact of 
larger scale expansion that involves adding multi-
ple signs. The left half of Figure 4 and Table 4 
summarize performance of core and added signs 
at different stages of expansion (adding 100, 500, 
750, and 1000 signs). 

We observed that as more signs are added, dic-
tionary performance degrades. However, even in 
the largest expansion scenario we tested, dictionary 
retrieval performance overall remains reasonable 
for core and added signs at each stage of expan-
sion (Table 4). When adding 100 signs, new signs 
achieve a DCG of 0.7984 and a top-1 accuracy of 
64.33% on average – a slight drop in performance 

compared to the baseline expansion setup. At this 
tier, the impact on core vocabulary is also minimal, 
dropping to a DCG of 0.7968 and top-1 accuracy of 
64.84% compared to pre-expansion. We find that 
performance continues to drop for both core and 
added vocabulary as we add more signs to the dic-
tionary. The last expansion tier, adding 1000 signs, 
achieves a DCG of 0.7397 and top-1 accuracy of 
56.03% for new signs and a DCG of 0.7436 and 
top-1 accuracy of 57.27% for core vocabulary. This 
tier corresponds to effectively doubling the vocab-
ulary of the dictionary and shows a ∼9 point drop 
in top-1 accuracy and a 0.06 point drop in DCG. 
While this is not insignificant, we note that top-
10 accuracy remains above 85% post-expansion 
for both core and added signs, meaning that users 
of a dictionary will continue to find the desired 
sign among the first 10 entries. This suggests that 
expanded dictionaries generally maintain similar 
levels of usability in our simulated setting, even up 
to 1000 added signs. 

4.5 Adding Many Signs with One Example 

We next assessed the interaction between adding 
multiple signs to a dictionary and limited number of 
expansion samples per sign. Figure 3 summarizes 
our results multiple stages of expansion and across 
two different setups– using a random contributor’s 
video for each sign vs. using a specific, long-term 
contributor’s video for all signs. 

For both setups, we note a similar overarching 
trend that performance degrades as we proceed to 
larger expansion tiers i.e., as we add more signs 
to the vocabulary. However, we find that perfor-
mance for core and added signs varies drastically 



Figure 3: Impact of chosen expansion sample when 
adding multiple signs with one example. Reporting 
DCG of added signs (red) and core signs (blue). 

Figure 4: Comparing trends in dictionary expansion 
across large and small dictionaries.Reporting DCG of 
added signs (red) and core signs (blue). 

in each setup (Figure 3 and Appendix D). When us-
ing the random contributor’s video for added signs 
(alongside centroid for core signs), we find large 
disparities in performance between added signs and 
core signs – added signs achieve a DCG of ∼0.4 
and top-1 accuracy of ∼20% in contrast to core 
signs with a DCG of ∼0.75 and top-1 accuracy of 
∼62% across different stages of expansion (Table 
5). When using a long-term contributor’s videos, 
we again note the benefit of reducing user-variation 
in the retrieval space (Table 6)– added signs achieve 
a much better performance: a DCG of ∼0.64 and 
a top-1 accuracy of ∼44%. We note that there are 
less disparities between core and added signs in this 
setup; however, we see a bigger drop in core vo-
cabulary performance compared to pre-expansion: 
achieving a DCG of ∼0.65 and a top-1 accuracy of 
∼48% (Table 6). This is likely due to the fact that 
the seed signer’s video does not approximate the la-
tent representation of the sign as well as calculating 
centroid across multiple users. 

4.6 Small Dictionaries 

We were curious if the trends we see in dictionary 
expansion experiments would hold for dictionaries 
with smaller core vocabularies (such as new or 
emerging dictionaries). We tested this scenario 
using models trained on a vocabulary of 100 signs 
with multiple examples per sign. We then tested 
expansion using multiple examples per sign. 

When adding a single sign to the vocabulary, 
we find that similar to our results with the larger 
dictionary, the performance of the added signs is 
comparable to that of the core vocabulary (first row 
of tables in Appendix E). When adding multiple 
signs, this trend continues (Figure 4)– we find small 
gaps between core vocabulary performance and 
added vocabulary performance at each stage of 
expansion. However, for the smaller dictionary, we 
note much larger variations in performance across 
different core-unseen splits (as evinced by large 
deviation bars in Figure 4). For example, with the 
randomly generated split, adding 10 signs to the 
vocabulary leads to a 9 point drop in top-1 accuracy 
for added signs (going from 67.22 to 58.21) (Table 
7); whereas the semantically distributed split has 
almost no drop (Table 8) and the HandSpeak split 
has 3 point drop (Table 9). We believe this suggests 
that the lexical composition of the vocabulary (both 
core and added) is a much more significant factor 
for small dictionary expansion. Lastly, we note that 
performance degrades faster with each expansion 
tier for the small dictionaries. We hypothesize that 
this is because small dictionaries have not been 
exposed to sufficient data during training to learn 
good/robust feature representations for signs. 

4.7 Visual and Runtime Analysis 

Our representation-based method assumes that 
signs that are visually similar are placed closer 
to each other in the embedding space. To evaluate 
this, we examined the visual similarity of errors 
made by our method (i.e., confusions) in the base 
setup. We used phonological labels from ASL-
Lex (Sehyr et al., 2021) to identify key parameters 
(Handshape, Movement, Location) for each sign 
in our vocabulary and then counted how many of 
these features differed between confused signs. We 
find that on average 1.85 features differ between 
confused signs. In contrast, when sampling 1000 
random pairs of signs from the lexicon, 2.38 fea-
tures differ on average. This indicates that the 
confusions made by the model are between signs 



with fewer differences in phonology (i.e., more vi-
sually similar signs). Appendix F provides some 
examples of common confusions. 

Finally, given the motivation around practical 
deployment, we calculated the time it takes for re-
trieval as the dictionary expands. As expected with 
nearest-neighbor search, retrieval time increases 
linearly with the size of the vocabulary: 10.12ms 
for 1000 signs vs. 16.08ms for 1500 signs vs. 
21.47ms for 2000 signs. At the current vocabu-
lary sizes, we anticipate this increase in time would 
not significantly impact user experience. However, 
as the dictionary grows further, implementing tech-
niques for speeding up nearest neighbor search 
(e.g., using Meta’s FAISS package) would be valu-
able. 

5 Discussion 

In this work, we explored sign language dictionary 
expansion across a variety of settings. Our results 
highlight the feasibility of expanding sign language 
dictionaries using feature representation-based ap-
proach, and demonstrate that performance is con-
tingent on the type and quantity of data available 
for new vocabulary. 

Given enough examples of a sign, we show 
that incorporating it into an existing dictionary is 
quite feasible. This is valuable for when small 
changes need to be made to a dictionary quickly 
(e.g., recording a new variation or documenting a 
newly emerging and rapidly adopted sign, like the 
sign for ‘coronavirus’). 

When adding multiple signs with multiple ex-
amples, we show that models are generally robust, 
albeit at a slightly lower performance than when 
just a single sign is added. This can inform the fre-
quency at which we retrain models in response to 
changing vocabularies. A comparison of numbers 
from the small dictionary experiments (100 core 
signs) to the large dictionary experiments (1000 
core signs) suggest models may need to be re-
trained at more frequent intervals initially, but less 
often once they’ve develop robust representations. 

On the other hand, we find that performance 
degrades when added new signs that have only 
a limited number of samples. As we would ex-
pect, this is the most difficult, but also the most 
realistic, expansion scenario. This illuminates an 
important direction for future research: examining 
new methods for incorporating signs into a dictio-
nary in data-constrained scenarios. We focused on 

classifiers trained using deep learning in this work; 
however, alternative training approaches (e.g., meta 
learning) may result in more robust feature repre-
sentations for core and added signs. We encourage 
researchers to take up this line of inquiry. 

Looking forward, we emphasize the importance 
of addressing dictionary expansion for sign lan-
guages. Compared to written languages, existing 
sign language dictionaries represent only a small 
fraction of the true language lexicon. While many 
crowdsourcing and documenting initiatives are un-
derway, gathering a snapshot of sign languages that 
is representative of the many different regional and 
contextual variations continues to be a challenge. 
In addition to variations in everyday vernacular, 
different fields of study (such as STEM disciplines) 
frequently produce new signs to represent new con-
cepts. Dictionary expansion then offers a crucial 
pathway to building sustainable and scalable sign 
language dictionaries. 

Our results also offer interesting implications for 
the maintenance of current crowdsourced dictionar-
ies. Examples available for each sign are expected 
to grow over time with contributions from users. 
A representation-based approach like ours (that 
works with any number of signs and any number 
of examples per sign) aligns well to the fluctuating 
vocabulary size and data availability encountered 
in these dictionaries. Initially, dictionary adminis-
trators could work to incorporate a sign with any 
available sample, and then switch to centroid for 
these added signs as more examples are collected. 
While this results in poor added sign performance 
initially, it allows the sign to be incorporated into 
the video-based dictionary and solicit further in-
teraction and contributions from dictionary users. 
To maximize initial performance, dictionary ad-
ministrators could also work to sustain long-term 
contributors to record most, if not all, signs being 
added to the dictionary (as this shows best added 
sign performance with limited data). 

Overall, our work outlines directions for sign 
language research aligned with community needs 
and real world settings and furthers the exploration 
of sign languages as languages in their own right. 

6 Limitations 

In this work, we reported results on dictionary ex-
pansion using only an ST-GCN model. While this 
architecture is frequently used in sign language 
recognition and has the benefit of being lightweight, 



it is not the only established approach. Appearance-
based approaches to sign language recognition (like 
I3D) might fare differently under expansion sce-
narios. Exploring dictionary expansion across a 
variety of architectures as well as robustness of 
their learned feature representations could be an 
interesting direction for future research. 

To simulate dictionary expansion, we created 
core-unseen splits from ASL Citizen. This meant 
that many of the contributors in the unseen split had 
previously been seen by the model – while this is 
reflective of a real-world scenario (long-term dictio-
nary contributors), using a completely new dataset 
for unseen vocabulary would have also allowed us 
to simulate a dictionary setting with a completely 
new contributor scenario for added signs. 

In our results, we note that the centroid approach 
outperforms the classifier even in the base dictio-
nary setting – to the best of our knowledge, this 
has not been discussed in prior literature. While 
valuable, a core limitation of this approach is that 
the centroid representation requires multiple train-
ing examples to become reliable, which may be 
difficult leverage with data scarcity. 

Our analysis surfaces large variance in dictio-
nary retrieval performance across contributors (sec-
tion 4.3), we do not investigate these disparities in 
depth. We hypothesize these disparities could be 
explained by variations in video quality for these 
different signers or biases in the underlying model 
(or both). Disentangling these aspects and more 
systematically exploring dictionary expansion per-
formance across different contributors is valuable 
direction for future work. 

We also highlight differences in dictionary ex-
pansion trends at smaller vs. larger core vocab-
ulary sizes. However, our results are limited to 
comparing two specific vocabulary sizes (100 vs. 
1000) – a more systematic investigation across dif-
ferent vocabulary sizes may have better unearthed 
overarching trends. Additionally, with our smaller 
vocabularies we note sensitivity to lexical compo-
sition, but our analysis reports aggregates which 
prevents us from investigating sign-level nuances 
and conducting a linguistically-informed analysis. 

Lastly, we position our work related to evolu-
tion of sign languages, but only focus on adding 
signs to dictionaries and not replacing or removing 
signs. While our method could be easily adapted 
to address these, further research is required to 
investigate impacts on overall dictionary retrieval 
performance. 
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A Core Dictionary Performance 

Table 1 corresponds to section 4.1, where we establish a baseline of the classifier performance and our 
feature-representation approach using the test split of our core vocabulary. 

Setup DCG Rec@1 Rec@10 

Classifier 0.7787 ± 0.0051 0.6221 ± 0.0101 0.8860 ± 0.0020 
All Features 0.7719 ± 0.0016 0.6111 ± 0.0052 0.8815 ± 0.0021 

Centroid 0.8050 ± 0.0013 0.6604 ± 0.0040 0.9048 ± 0.0010 

Table 1: Establishing baseline performance using classifier and our feature-based approach. The ‘all features’ setting 
corresponds to naive use of learned feature representations, and centroid corresponds to calculating centroid for 
each sign first. 

B Adding a Single Sign 

Table 2 corresponds to section 4.2 and section 4.3, where we experiment with adding one sign to the 
dictionary. Table 3 summarized results of our experiments using different contributors when simulating 
our ‘long-term contributor’ scenario in section 4.3. 

Setting DCG Rec@1 Rec@10 

Many Examples 0.8042 ± 0.0037 0.6538 ± 0.0047 0.9105 ± 0.0040 
One Random Contributor Example 0.4492 ± 0.0016 0.2174 ± 0.0041 0.5396 ± 0.0056 

One Long-term Contributor Example 0.6881 ± 0.0025 0.4955 ± 0.0006 0.81205 ± 0.0070 

Table 2: Dictionary expansion performance when adding a single sign to the dictionary under a variety of data 
settings. We can see that amount of data and choice of sample (in low-data settings) are a significant factor in 
performance. 

Setup DCG Rec@1 Rec@10 

P52 (seed signer) 0.6881 ± 0.0025 0.4955 ± 0.0006 0.8121 ± 0.0070 
P33 0.5556 ± 0.0017 0.3275 ± 0.0035 0.6781 ± 0.0014 
P11 0.4715 ± 0.0031 0.2482 ± 0.0024 0.5615 ± 0.0043 
P50 0.6163 ± 0.0035 0.4004 ± 0.0031 0.7445 ± 0.0056 
P27 0.6346 ± 0.0037 0.4215 ± 0.0038 0.7678 ± 0.0038 

Table 3: Dictionary expansion performance when adding a single sign to the dictionary with a single example and 
using a specific contributor’s videos to represent all signs. We see performance varies significantly across chosen 
contributor. 



C Adding Many Signs with Many Examples 

Table 4 corresponds to section 4.4, where we experiment with adding many signs to the dictionary using 
all available samples – it summarizes performance of both added signs and core signs with each stage 
of expansion (adding 100, 500, 750, 1000 signs). We report averages across each the three randomly 
sampled sets for each stage of expansion. 

Setup DCG Rec@1 Rec@10 

Adding 1 0.8042 ± 0.0037 0.6538 ± 0.0047 0.9105 ± 0.0040 
Adding 100 0.7984 ± 0.0090 0.6433 ± 0.0107 0.9078 ± 0.0084 
Adding 500 0.7644 ± 0.0031 0.5949 ± 0.0030 0.8815 ± 0.0040 
Adding 750 0.7494 ± 0.0080 0.5730 ± 0.0100 0.8689 ± 0.0093 

Adding 1000 0.7397 ± 0.0076 0.5603 ± 0.0101 0.8600 ± 0.0072 

Setup DCG Rec@1 Rec@10 

Original 0.8050 ± 0.0013 0.6604 ± 0.0040 0.9048 ± 0.0010 
Adding 100 0.7968 ± 0.0015 0.6484 ± 0.0038 0.8989 ± 0.0018 
Adding 500 0.7694 ± 0.0025 0.6090 ± 0.0052 0.8774 ± 0.0022 
Adding 750 0.7548 ± 0.0034 0.5882 ± 0.0067 0.8657 ± 0.0030 

Adding 1000 0.7436 ± 0.0033 0.5727 ± 0.0057 0.8567 ± 0.0037 

Table 4: Dictionary Expansion performance when adding multiple signs with multiple examples. Top table is 
performance of added signs and bottom table is corresponding performance of core signs after dictionary expansion. 
Top rows in each table are baselines from previous settings. 



D Adding a Many Signs with Single Example 

Tables 5 and 6 corresponds to section 4.5, where we experiment with adding many signs to the dictionary 
using a single only one expansion sample. They summarize results with two different setups: using a 
random contributor’s video for each sign vs. using the seed signer’s video across the board. We report 
performance of both added signs and core signs with each stage of expansion (adding 100, 500, 750, 1000 
signs). We report averages across each the three randomly sampled sets for each stage of expansion. 

Setup DCG Rec@1 Rec@10 

Adding 100 0.4527 ± 0.0062 0.2203 ± 0.0016 0.5457 ± 0.0163 
Adding 500 0.4332 ± 0.0043 0.2016 ± 0.0023 0.5200 ± 0.0094 
Adding 750 0.4263 ± 0.0066 0.1971 ± 0.0040 0.5091 ± 0.0114 

Adding 1000 0.4192 ± 0.0024 0.1910 ± 0.0013 0.4990 ± 0.0051 

Setup DCG Rec@1 Rec@10 

Adding 100 0.8009 ± 0.0021 0.6543 ± 0.0059 0.9027 ± 0.0009 
Adding 500 0.7909 ± 0.0037 0.6402 ± 0.0078 0.8946 ± 0.0006 
Adding 750 0.7852 ± 0.0035 0.6327 ± 0.0078 0.8895 ± 0.0010 

Adding 1000 0.7792 ± 0.0048 0.6251 ± 0.0085 0.8845 ± 0.0008 

Table 5: Dictionary Expansion performance when adding multiple signs with a single example, and using a random 
contributor’s video as a sample. Top table is performance of added signs and bottom table is corresponding 
performance of core signs after dictionary expansion. We see large disparities between added and core sign 
performance at each expansion stage. 

Setup DCG Rec@1 Rec@10 

Adding 100 0.6813 ± 0.0062 0.4877 ± 0.0118 0.8038 ± 0.0057 
Adding 500 0.6504 ± 0.0035 0.4477 ± 0.0037 0.7743 ± 0.0086 
Adding 750 0.6308 ± 0.0074 0.4231 ± 0.0091 0.7561 ± 0.0088 

Adding 1000 0.6164 ± 0.0034 0.4047 ± 0.0055 0.7401 ± 0.0075 

Setup DCG Rec@1 Rec@10 

Adding 100 0.7070 ± 0.0049 0.5205 ± 0.0043 0.8284 ± 0.0064 
Adding 500 0.6764 ± 0.0056 0.4808 ± 0.0069 0.8005 ± 0.0092 
Adding 750 0.6613 ± 0.0052 0.4614 ± 0.0065 0.7855 ± 0.0091 

Adding 1000 0.6477 ± 0.0056 0.4443 ± 0.0077 0.7728 ± 0.0087 

Table 6: Dictionary Expansion performance when adding multiple signs with a single example and using the seed 
signer’s videos to represent all signs. Top table is performance of added signs and bottom table is corresponding 
performance of core signs after dictionary expansion. We see improvement in added sign performance compared to 
the random contributor setup, but core sign performance lags behind. 



E Small Dictionaries 

Tables 8 and 7 and 9 corresponds to section 4.6, where we experiment with simulating dictionary expansion 
for small dictionaries. We report results on three different core-unseen splits: randomly generated (Table 
7), semantically distributed (Table 8), and specialized (language learning lexicon) (Table 9). To sample 
the semantically distributed glosses, we extracted GloVE embeddings (Pennington et al., 2014) for all 
glosses in ASL Citizen dataset (2731) and used geometric sketching (Hie et al., 2019) to sample 100 
representative glosses. In the following tables, we report performance of both added signs and core signs 
with each stage of expansion (adding 100, 500, 750, 1000 signs). We report averages across each the three 
randomly sampled sets for each stage of expansion. 

Setup DCG Rec@1 Rec@10 

Adding 1 0.8314 0.6722 0.9580 
Adding 10 0.7877 0.5821 0.9522 
Adding 50 0.7654 0.5735 0.9180 
Adding 75 0.7572 0.5714 0.8987 

Adding 100 0.7328 0.5285 0.8937 

Setup DCG Rec@1 Rec@10 

Original 0.8302 0.6953 0.9290 
Adding 10 0.8311 0.6967 0.9396 
Adding 50 0.7925 0.6430 0.9071 
Adding 75 0.7783 0.6244 0.8915 

Adding 100 0.7625 0.6054 0.8754 

Table 7: Performance with small randomly sampled dictionary, adding multiple signs with multiple examples. Top 
table is performance of added signs and bottom table is corresponding performance of core signs after dictionary 
expansion. Top rows in each table correspond to establishing a baseline and adding single signs. 

Setup DCG Rec@1 Rec@10 

Adding 1 0.8230 0.6549 0.9551 
Adding 10 0.8300 0.6695 0.9491 
Adding 50 0.7544 0.5383 0.9236 
Adding 75 0.7481 0.5511 0.8959 

Adding 100 0.7511 0.5555 0.9015 

Setup DCG Rec@1 Rec@10 

Original 0.8427 0.7073 0.9498 
Adding 10 0.8304 0.6965 0.9409 
Adding 50 0.7962 0.6530 0.9086 
Adding 75 0.7818 0.6305 0.8980 

Adding 100 0.7658 0.6056 0.8841 

Table 8: Performance with small semantically diverse dictionary, adding multiple signs with multiple examples. Top 
table is performance of added signs and bottom table is corresponding performance of core signs after dictionary 
expansion. Top rows in each table correspond to establishing a baseline and adding single signs. 



Setup DCG Rec@1 Rec@10 

Adding 1 0.8528 0.7083 0.9689 
Adding 10 0.8261 0.6601 0.9568 
Adding 50 0.8112 0.6446 0.9468 
Adding 75 0.7835 0.6016 0.9307 

Adding 100 0.7692 0.5818 0.9150 

Setup DCG Rec@1 Rec@10 

Original 0.8255 0.6694 0.9507 
Adding 10 0.8291 0.6801 0.9481 
Adding 50 0.8007 0.6423 0.9233 
Adding 75 0.7863 0.6184 0.9139 

Adding 100 0.7749 0.6053 0.8964 

Table 9: Performance with small specialized lexicon dictionary (for language learners), adding multiple signs with 
multiple examples. Top table is performance of added signs and bottom table is corresponding performance of core 
signs after dictionary expansion. Top rows in each table correspond to establishing a baseline and adding single 
signs. 

F Visual Similarity of Common Confusions 

We present some common confusions that occurred for an experimental split under the Base Setup scenario 
(Section 4.2). We present ground truth and predicted glosses alongside phonological labels to describe 
visual similarity. These phonological labels were derived from ASL-Lex (Sehyr et al., 2021) (a database 
of phonological properties of signs which all ASL Citizen glosses are cross-referenced against). 

Type Gloss Handshape Movement Location 

Truth SHOVEL1 s Curved Neutral 
Predicted DIGUP a Curved Neutral 

Truth ASSEMBLY a Straight Body 
Predicted ATLANTA a Curved Body 

Truth RING g Straight Hand 
Predicted FILTER 5 Straight Neutral 

Truth VISUALIZE s Straight Head 
Predicted IMAGINE2 s Straight Head 

Truth CALM closed-b Curved Neutral 
Predicted QUIET closed-b Curved Head 

Table 10: Common Confusions from Base Setup Scenario (Adding One Sign With Many Examples) 
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